
IDEs
Visual C++, Embedded Visual C++ 3.0/4.0

VS C#.NET 2003
Java Forte-Netbeans

Networks and Device Programming Models

The book Building Solutions with the .NET Compact
Framework describes how the following development
models apply to network connectivity. Loosely
paraphrasing from the book these modes are:

Disconnected
A standalone application which may have a local
database on the device. This application never
connects to a network.

Always Connected
The application is connected to a network and requires
the network in order to function. An example of this is a
device using an 802.11 or GPRS card to connect to a
Web Server. In this case the application resides on the
web server. The devices program is Internet Explorer.

Occasionally Connected
The majority of applications fall into this category. In
this case the device is connected to a network but
must work whether connected or not! This model is a
stand alone binary. A local database may be utilized.
Synchronization with a remote web server or other
server based program will occur when network
connectivity is possible. Buffering must be utilized to
retain state and data. ∆

Sample Solutions

.NET Compact Framework Client
Data can be captured and validated matching an XML
schema speciifc to the application requirements. Data
is then uploaded as a "transaction" to the target host.
Model supports buffering of data during network
outages.

SOAP Server - HTTP Client
Via ASP scripting a simple but powerful SOAP server
can be customized to provide 7x24 access via IIS. Any
client XML enabled browser or application to can
perform transactions via HTTP.

Java - RMI-Remote Method Invocation
This is a basic RMI client/server (stub/skeleton) which
can be readily deployed from Personal Java to full
blown J2EE environments. Used for applications where
distributed programming is required. Buffering of data
during network outages is supported via serialization.
Both Remote calls and callbacks are supported.
Environments for mobile clients include: Jeode’s
Personal Java JeodeRuntime.

UDP Client/Server
Designed for the wireless environment. This model
supports data transfer in a peer to peer manner, where
nodes can be client, server or both. Model supports
buffering of data during network outages.
 Logging of data transfer and errors are provided.

mobile 404 307-6731
paulzazzarino@3zwireless.com

Mobile Data Collection and TCP vs UDP

While most development is typlcally written with
TCP, it can present all sorts of problems when
working in wireless environments. UDP stands for
User Datagram Protocol, while TCP is
Transmission Control Protocol. Both are two types
of internet protocols. UDP is a simpler than TCP.
TCP guarantees delivery of data and does so most
of the time. UDP is more of a send and pray
protocol. Because of this, implementations utilizing
UDP need to handle packet assembly, sequencing
issues and dropped packets carefully. UDP
presents itself as a good protocol for wireless
environments where roaming and power
management create issues which bring out the
worst in TCP . Moving in and out of range also
presents problems when using TCP. The
connection will be dropped and it will take some
time for a reconnection to happen creating lags in
interactive use.

Device Control From None to Extremely High

None and Stateless
Web Based Servers such as Microsoft’s Internet
Server and Apache’s Web Server provide no
control over the remote client hardware they run
on. They also require a device to be connected
100% of the time. Web based applications typically
are stateless as well as forcing work-a-rounds such
as cookies and other methods to keep track of
state. While control and state may be issues
lacking in Web based applications, Server
Technologies do provide many powerful
pre-canned methods of functionality which can not
be ignored.

High Degree of Control - Stateful
Applications developed with Microsoft Embedded
Visual C++ Compiler provide direct control over the
hardware. Peripherals such as cameras, bar code
scanners, fingerprint and RF ID readers are
accessed via software written in the C++
Language. Other Language tools such as C#, Java
or Visual Basic still force the developer to write
software for direct hardware access in C++ and
package them in libraries for use. Binary
applications provide more control and are generally
easier to maintain state in.

